M.Tech. in Materials Engineering

SEMESTER I

S.No.	Course	Course Name	Contact Hours		Credits	
	Code		L	Т	Р	
1	MM-601	Concepts in Metal and Ceramic	3	0	2	4
2	MM-602	Materials Characterization	3	0	2	4
3	MM-603	Thermodynamics of Materials	3	1	0	4
4	MM-604	Polymers and Composites Technology	3	0	2	4
5	MM-605	Physical and Mechanical Metallurgy	3	0	2	4
6	MM-606	MathematicsforComputationalMaterialsEngineering	3	0	2	4
7	PGC-601	Research Methodology and IPR	2	0	0	2
		Total	20	1	10	26

SEMESTER II

S No	Course	Course	Contact Hours/week			Cradita
5.110.	Code	Course	L	Т	Р	Creans
1	MM 608	Fatigue, Fracture and Failure Analysis	3	1	0	4
2	MM 609	Materials Processing	3	0	2	4
3		Elective I (from Departmental Electives)	3	1	0	4
4		Elective II (from Departmental Electives)	3	1	0	4
5		Elective – III (from Open Electives)	3	1	0	4
6		Elective – IV (from Open Electives)	3	1	0	4
7	PGC-602	Audit Course	2	0	0	0
		Total	18	6	0	24

SEMESTER III

SI No	Course Code	Course	Contact Hours	Creadita	
51. NO.	Course Code		L	T/P	Creuits
1	MM-651	M.Tech. Dissertation Phase I	28		14
		Total	28		14

SEMESTER IV

SI No	Course Code	Course	Contact Hours	Credita	
51. INO.	Course Code		L	T/P	Creuits
1	MM-652	M.Tech. Dissertation Phase II	28		14
		Total	28		14

List of Electives:

Sr. No.	Course Code	Electives from the Department
1.	MM 607	Introduction to Computational Materials Engineering
2.	MM 610	Nanomaterial and Their Applications
3.	MM 611	Non-Destructive Evaluations
4.	MM 612	Polymer blends and Nanocomposites
5.	MM 613	Biomaterials
6.	MM 614	Design of Materials
7.	MM 615	Magnetism and Magnetic Materials
8.	MM 616	Heat-treatment of Metals and Alloys
9.	MM 617	Materials for High -Temperature Applications
10.	MM 618	Advanced Steel Technology
11.	MM 619	Military Materials
12.	MM 620	Introduction to Corrosion
13.	MM 621	Welding Science and Technology

14.	MM 622	High temperature Corrosion
15.	MM 623	Corrosion mitigation
16.	MM 624	Advanced Coating
17.	MM625	Surface Science and Engineering
18.	MM 626	Reliability Engineering
19.	MM 627	Electrical and Electronic Materials

Program Outcomes (POs)

- **PO1:** An ability to independently carry out research /investigation and development work to solve practical problems
- **PO2:** An ability to write and present a substantial technical report/document
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

Program Specific Outcomes (PSOs)

On completion of M.Tech (Materials Engineering) programme graduates will be able to

- **PSO1:** To analyse and tackle the complex and diverse engineering problems by appropriate experimentation and interpretation, and, provide probable solutions by applying principles of Materials engineering in combination to the fundamental knowledge of basic sciences.
- **PSO2:** To be able to design and device new procedures to arrive at a solution for identifying or troubleshooting problems at fundamental/system/component level.
- **PSO3:** An ability to work together collaboratively in multidisciplinary teams to tackle multifaceted problems and pursue a bright career in Materials engineering and allied areas by demonstrating professional success at different platforms within industry, governmental bodies such as Defence Research and Development Organization & Tri -services (Army, Navy & Air force), Coast Guard, DGQA, DQA, and Defence Public Sector units.

Course Structure:

<u>Course Name: Concepts in Metal and Ceramic</u> <u>Course Code: MM 601</u>

Course Outcomes (CO):

CO-1: Understanding classifications and characteristics of materials

CO-2:	Analysis and properties of crystalline materials
CO-3:	Detailed overview of ceramics and their characteristics
CO-4:	Cognizance of dielectrics, refractories and their applications
CO-5:	Demonstration of Solid state, Sol-Gel, Hydrothermal and Co-precipitation process

	Syllabus Details
Unit I	Introduction, classification of materials; atomic structure, bonding in solids,
	bonding forces and energies; crystal structure, unit cells, crystal systems,
	crystallographic points, directions, and planes
Unit II	crystalline and non-crystalline materials, anisotropy; Structure of crystalline
	solids:
	metallic crystal structure
Unit III	ceramic materials, Basic properties, classification of ceramic materials-
	conventional and advanced, ceramic crystal structure, Defects in ceramics: types
	of defects, origin of point defects, defects and electron energy levels, defect
	equilibria in ceramic crystals, Phase equilibria in ceramics
Unit IV	Dielectrics: Dielectric strength, Loss factor. Equivalent circuit description of linear
	dielectrics, Power factor, Dielectric polarisation, Polarisation mechanisms,
	Applications. Refractories: Classification of Refractories, Applications. Glass:
	Definition of glass, Basic concepts of glass structure, Different types of glasses.
	Application of glasses.
Unit V	Practical: Solid state, Sol-Gel, Hydrothermal and Co-precipitation process

- Materials Science and Engineering by William D. Callister, John Wiley & Sons, Inc.
- *Elements of Materials Science and Engineering by Lawrence H. van Vlack.*

Reference Book(s):

- Elements of Ceramics: F.H Norton
- Fundamentals of Ceramics: Barsoum
- Introduction to Ceramics: W.D. Kingery
- Physical Ceramics for Engineers: VanVlack
- Handbook of Ceramics: Editor S. Kumar Ceramic
- Materials for Electronics: R.C. Buchanon

<u>Course Name: Materials Characterization</u> <u>Course Code: MM 602</u>

Course (Course Outcomes (CO):	
CO-1:	Illustrate the diffraction techniques and its interpretation.	
CO-2:	Described several microscopy instruments and their imaging fundamentals	
CO-3:	Summarized spectroscopy techniques and their applications	

CO-4:	Understanding of thermal analysis techniques
CO-5:	Hands on experience of microscopy techniques and corrosion methods.

	Syllabus Details
Unit I	Diffraction Techniques- Concepts of diffraction, scattering and radiation-matter
	interactions, X-ray diffraction: phase identification, strain and grain size
	determination
Unit II	Microscopy and Imaging- Fundamentals of Imaging: magnification, resolution,
	depth of field and depth of focus, aberration and astigmatism, SEM: imaging
	modes, image contrast, illustrative applications, Basic principle and components
	of TEM: Contrast mechanisms, bright field, dark field, TEM application in crystal
	defect analysis, Electro diffraction in TEM, STM and AFM
Unit III	Spectroscopic Techniques- Fundamental basis of Spectroscopic analysis EDS and
	WDS applications, X-ray Photoelectron Spectroscopy and Auger electron
	spectroscopy
Unit IV	Thermal Analysis Techniques- DSC, DTA, TGA and Dilatometry,
	Electrochemical polarization characterization, Electrochemical Impedance
	spectroscopy.
Unit V	Practical: XRD, TEM, SEM, Cyclic voltammetry, Tafel plot, and Salt Spray,
	weatherometer, cyclic corrosion test, cathodic protection monitoring, localised
	corrosion monitoring methods (SECM, SEVT)

- Elements of X-ray Diffraction, B. D. Cullity, Prentice Hall, 2001
- Solid State Chemistry and its Applications, Anthony R. West, Wiley.

Reference Book(s):

- Materials Characterization, ASM Handbook Vol 10.
- Characterization of Materials, Vol 1, Elton N. Kaufmann

Course Name: Thermodynamics of Materials Course Code: MM 603

Course (Course Outcomes (CO):	
CO-1:	Understand the basic principles of thermodynamic concepts	
CO-2:	Learn the thermodynamic relations among variables and their transformations	
CO-3:	Demonstrate basics of statistical thermodynamics	
CO-4:	Analysing free energy equation and curves and its interpretation for single	
	component system	
CO-5:	Detailed understanding of binary system, phases formation and chemical potential	

	Syllabus Details
Unit I	Simple and composite systems, phases, Internal energy, Enthalpy, Entropy, Gibbs
	Free energy, Specific heat, Laws of thermodynamics, Reversible and Irreversible
	processes, adiabatic work interaction.
Unit II	Generation of Auxiliary Functions: Legendre transforms, Coefficient relations,
	Maxwell's relations, Thermodynamic relations among state functions variables
	and its application to solids
Unit III	Statistical definition of temperature and entropy, Micro- and Macro-states,
	Maxwell- Boltzmann distribution, Thermodynamic equilibrium: stable
	equilibrium states, criteria for equilibrium
Unit IV	Free energy of single component system: Free energy as a function of temperature,
	Clausius-Clapeyron Equation, Driving force for solidification; Equilibrium
	vacancy concentration and Analysis of Magnetic transitions

- David R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, 1798
- Ahindra Ghosh, Textbook of Materials and Metallurgical thermodynamics. Prentice Hall of INDIA 2003

Reference Book(s):

- R.T. DeHoff, Thermodynamics in Materials Science, McGraw-Hill, Singapore, 1993
- D. A. Porter and K. E. Easterling, Phase transformations in Metals and Alloys, Chapman and Hall, London, 1996
- Taiji Nishizawa, Thermodynamics of microstructures, ASM International

<u>Course Name: Polymer and Composite Technology</u> <u>Course Code: MM 604</u>

Course Outcomes (CO):		
CO-1:	Understanding classifications and characteristics of polymers	
CO-2:	Analysis of the polymer properties	
CO-3:	Conception of composite and nanofiller	
CO-4:	Cognizance of Manufacturing of composites	
CO-5:	Case studies of polymers and composites for Defence Applications	

	Syllabus De	tails					
Unit I	Polymers:	Classification	of	Polymers,	Co-Polymers,	Thermoset	and
	Thermoplast	ics, Crystalline	and A	Amorphous Po	olymers, Polyme	rization, Degr	ee of
	Polymerizati	on, Glass transi	tion t	emperature, N	Molecular weight	of polymer a	nd its
	determination	n by various tec	hniq	ues.			

Unit II	Physical methods of polymer analysis such as IR, DSC, TGA, XRD etc.,
	Viscoelasticity, Polymer blends and alloys: thermodynamics, morphology and
	properties
Unit III	Composites: Conventional polymer composites, Fiber reinforced composites,
	Nanofillers and their composites; Recycling of macro and micro polymer
	composites
Unit IV	Composite manufacturing techniques: Solution-cast, Melt-mixing, Extrusion,
	Compression molding, Resin transfer, Resin infusion, Vacuum casting and
	electrospinning.
Unit V	Defence Applications: Coatings (Superhydrophobic, Self-Healing), Fire retardant,
	Corrosion Resistant, EMI Shielding, Environmental responsive polymers (Self-
	healing, Phase change and Shape Memory), Polymer composites in aerospace
	applications. Service life prediction methodologies of polymers and composites

- V.R. Gowariker, Polymer Science, Wiley Eastern, 1995
- F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience, 1971.

Reference Book(s):

- Kumar and S. K. Gupta, Fundamentals and Polymer Science and Engineering, Tata McGraw-Hill, 1978
- Epel, J.N.:Engineering Plastics, Engineering Materials Handbook, ASM International 1988.
- Brydson, A.J. : Plastics Materials, Princeton, N.J., 1966

<u>Course Name: Physical and Mechanical Metallurgy</u> <u>Course Code: MM 605</u>

Course (Course Outcomes (CO):		
CO-1:	Identify the defects in metals and phases in Fe-FeC diagram with TTT and CCT		
	diagrams		
CO-2:	Analysis of defects transfer in crystal structure		
CO-3:	Conception of several strengthening mechanisms		
CO-4:	Cognizance of strength testing in materials and dependent phenomenon		
CO-5:	Case studies of metallurgy testing techniques		

	Syllabus Details
Unit I	Crystal defects/imperfection in Metals, dislocations, burger vectors, dislocations
	multiplications, dislocation interactions, stacking faults, Phase rule, Phase
	diagram, Eutectic, Fe-FeC diagram, TTT and CCT diagrams for carbon steel

Unit II	Plastic deformation in single crystal, critical resolved shear strength, deformation
Unit III	Strengthening mechanisms: Solid solution strengthening, strengthening from grain
	boundaries, strains hardening, strain ageing, annealing of cold worked materials,
	strengthening from particles, precipitation hardening
Unit IV	Hardness and tensile testing, stress-strain relationships, effect of strain, strain rate
	and temperature on flow stress, nanoindentation, High temperature deformation
	and Creep, Superplasticity
Unit V	Practical: Metal Polishing and Etching, Optical Microstructural Characterization,
	Wear and friction, hardness testing

• Mechanical Metallurgy, G.E. Dieter, McGraw-Hill book company, 1988

Reference Book(s):

- Mechanical behaviour of Materials, Williams F Hosford, Cambridge University press, 2005
- Materials Science and Engineering by William D. Callister, John Wiley& Sons, Inc.
- Physical Metallurgy Principles, Robert E Reed Hill, <u>Cengage Learning, Inc</u> publications, 1992
- Physical Metallurgy, Vijendra Singh, Standard Publishers Distributors, 2010.

<u>Course Name: Mathematics for Computational Materials Engineering</u> <u>Course Code: MM 606</u>

Course Outcomes (CO):		
CO-1:	Understand the basics of Linear Algebra	
CO-2:	Recognize the principles of advanced calculus	
CO-3:	Introduce vector calculus	
CO-4:	Utilise numerical methods to solve differential equations	

	Syllabus Details
Unit I	Algebra of real matrices: Determinant, inverse and rank of a matrix; System of
	linear equations (conditions for unique solution, no solution and infinite number
	of solutions); Eigenvalues and eigenvectors of matrices; Properties of eigenvalues
	and eigenvectors of symmetric matrices, diagonalization of matrices; Cayley-
	Hamilton Theorem.
Unit II	Limit, Continuity and differentiability; Maxima and minima; Partial derivatives;
	Total derivative.
Unit III	Gradient, divergence and curl; Line integrals, and Green's theorem.
Unit IV	Concepts of discretization in space/time, implicit, explicit; Taylor's series;
	Solution to ODEs; Classification of second order linear partial differential

equations; Method of separation of variables: One dimensional heat equation and
two-dimensional Laplace equation.

- Advanced engineering mathematics: Kreyszig; Wiley.
- Advanced engineering mathematics: Jain/Iyenger; Narosa

Reference Book(s):

- Advanced engineering mathematics: Peter V. O'Neil Cengage Learning
- Advanced engineering mathematics: Alan Jeffery; Academic Press

<u>Course Name: Introduction to Computational Materials Engineering</u> <u>Course Code: MM 607</u>

Course Outcomes (CO):		
CO-1:	Understand the basics of programming	
CO-2:	Implement the analytical and numerical solution to partial differential equations	
	utilised in Materials Engineering	
CO-3:	Analyze the mesoscopic modelling techniques	
CO-4:	Understand the principles of data-driven modeling	

	Syllabus Details
Unit I	Review the fundamentals and applications of programming in high level languages
	such as Python / MATLAB and low-level languages such as C / C++
Unit II	Introduction to modeling and simulations: Analytical solution of first-order
	nonlinear differential equation followed by their numerical solution; Numerical
	solution of Fickian laws in 1D (using low-level language) and 3D (using advanced
	solvers); Random Walker model
Unit III	Sampling methods to obtain numerical solution and its application to solve
	ferromagnetism in statistical mechanics; Diffuse-interface mesoscale models:
	Cahn-Hilliard model
Unit IV	Data driven modeling: Supervised and Unsupervised models, Fitting and
	visualization of multidimensional data; Data analytics using principal component
	analysis

Textbooks

• Introduction to Computational Materials Science – Richard LeSar, Cambridge University Press (2013). ISBN: 9781316614877

Reference Book(s):

• Mathematical Methods for Physics and Engineering, 3rd Edition – R.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press (2012). ISBN: 9780521139878

- Integrated Computational Materials Engineering (ICME) for Metals Mark F. Horstemeyer, TMS (2012). ISBN: 9781118022528
- Integrative Computational Materials Engineering : Concepts and Applications of a Modular Simulation Platform Georg J. Schmitz and Ulrich Prahl, Wiley-VCH Verlag GmbH & Co (2012). ISBN: 9783527330812

<u>Course Name: Fatigue, Fracture and Failure Analysis</u> <u>Course Code: MM 608</u>

Course Outcomes (CO):	
CO-1:	Detailed introduction to fatigue failure of materials
CO-2:	Analyze the effect of fatigue crack propagation and improving fatigue life
CO-3:	Conception of fracture mechanics
CO-4:	Conceptualize stresses induced during brittle fracture
CO-5:	Understanding fracture toughness in metals and alloys

	Syllabus Details
Unit I	Stress cycles, Interpretation of Fatigue Data. Endurance Limit, Effect of Mean
	Stress on Fatigue, Cyclic Stress-Strain Curve, Low Cycle Fatigue, Plastic Strain &
	Fatigue Life,
Unit II	Effect of Structural Features, Fatigue Crack Propagation, Stress Concentration &
	Fatigue, Size & Surface Effect, Effect of Metallurgical Variables & Enhancement
	of Fatigue Life,
Unit III	Classification of Fracture, Theoretical Strength of Metals, Griffith Theory of
	Brittle Fracture, Metallographic features of Fracture, Fractography
Unit IV	Dislocation Theory of Brittle Fracture, Effect of Tri-axial Stress, Strain Energy
	Release Rate, Stress Intensity Factor,
Unit V	Fracture Toughness & Design, KIC, CTOD, J-Integral, R-Curve, Toughness of
	Metals & Alloys. Stress corrosion cracking.

Textbooks

• Mechanical Metallurgy, 3rd Ed, George E Dieter, Mc-Graw Hill, New York, 1986.

Reference Book(s):

- Deformation and fracture mechanics of engineering materials, 4th Ed., R. W. Hertzberg, John Wiley & Sons, 1995.
- Elementary engineering fracture mechanics By David Broek Noordhoff 1974.
- Fatigue and Fracture of Metals, W. M. Murray, John Wiley, 1952.

Course Name: Materials Processing Course Code: MM 609

Course Outcomes (CO):	
CO-1:	Understand the processing of polymers
CO-2:	Analyse the processing of ceramics
CO-3:	Comprehend the processing of metals
CO-4:	Identify the metal forming processes
CO-5:	Demonstration of various processing units

	Syllabus Details
Unit I	Processing of Polymers- Extrusion, compounding, fiber spinning, injection
	moulding, compression moulding, Additive manufacturing
Unit II	Processing of ceramics- Compaction, moulding, sintering, refractory
	manufacturing processes, glass manufacturing techniques.
Unit III	Processing of Metals- Casting, Hot working, Cold working, Rolling, Annealing,
	Forging, Extrusion,
Unit IV	Wire drawing, Sheet metal forming, Joining Techniques, Friction stir welding,
	Powder Metallurgy
Unit V	Practical: Metal processing- rolling, annealing; polymer processing-Extrusion and
	compression molding, electrospinning

- Mechanical Metallurgy, 3rd Ed, George E Dieter, Mc-Graw Hill, New York, 1986.
- Manufacturing Processes and Materials for Engineers, L. E. Doyle, 1975. Powder

Reference Book(s):

- Metallurgy, Applications, Advantages and Limitations, Klar, Erhard, ASM, 1983, Ohio.
- Plastics Processing Data Handbook (2nd Edition), Rosato, Dominick, 1997.
- Plastic Injection Molding: Manufacturing by Douglas M. Bryce, 2007.
- Concise encyclopedia of plastics, Rosato, Marlene G, 2005
- Extrusion: the definitive processing guide and handbook, Giles, Harold F.; Wagner, John R.; Mount, Eldridge M, 2005.

<u>Course Name: Nanomaterial and Their Applications</u> <u>Course Code: MM 610</u>

Course Outcomes (CO):	
CO-1:	Learn the strategies for synthesis of nanomaterials

CO-2:	Classification of nanomaterials and analysis of the defects in crystalline
	nanomaterials
CO-3:	Analyze the structure property variation when reduced to nanoscale.
CO-4:	Understanding thermodynamics of nanomaterials
CO-5:	Case studies of nanomaterials in Defence applications

	Syllabus Details
Unit I	Overview of Nanostructures and Nanomaterials; Synthesis of Nanomaterials:
	Types and strategies for synthesis of nanomaterials;
Unit II	Crystalline nanomaterials and defects therein; Hybrid nanomaterials; Multiscale
	hierarchical structures built out of nanosized building blocks (nano to macro);
	Nanomaterials in Nature: Nacre, Gecko, Teeth; Nanostructures: Carbon
	Nanotubes, Fullerenes, Nanowires, Quantum Dots.
Unit III	Cells response to Nanostructures; Surfaces and interfaces in nanostructures,
	Ceramic interfaces, Superhydrophobic surfaces, Grain boundaries in
	Nanocrystalline materials, Defects associated with interfaces;
Unit IV	Thermodynamics of Nanomaterials; Overview of properties of nanostructures and
	nanomaterials; Overview of characterization of nanostructures and nanomaterials;
	Deformation behaviour of nanomaterials: Fracture and creep; Nanomechanics and
	nanotribology; Electrical, Magnetic and Optical properties;
Unit V	Applications of Nanotechnology in various fields: Defence, Aerospace and Marine
	Nanotechnology, Renewable energy, solar energy, fuel cells, Reinforcement in
	Ceramics, Drug delivery, Electronics etc.

• T. Pradeep, NANO: The Essentials, Tata McGraw-Hill Publisher, 2007. ISBN-13:978-0-07-061788-9.

Reference Book(s):

- K. Haghi, G. E. Zaikov, Advanced Nanotube and Nanofiber Materials, Nova Science Publishers Inc, 2012
- Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications, Cambridge University Press, 2008

<u>Course Name: Non-Destructive Evaluations</u> <u>Course Code: MM 611</u>

Course Outcomes (CO):	
CO-1:	Detailed introduction to handy NDT (Non-destructive techniques)
CO-2:	Cognizance of Eddy current and ultrasonic testing
CO-3:	Conception of acoustic emission and radiography techniques

CO-4:	Understanding automated NDT techniques
CO-5:	Case studies on NDT techniques application

	Syllabus Details
Unit I	Visual Inspection, Liquid Penetrant Testing, Magnetic Particle Testing,
Unit II	Eddy Current Testing, Ultrasonic Testing,
Unit III	Acoustic Emission Technique, Radiography Technique
Unit IV	Residual Stress Analysis, In-situ Metallography, Automation and Robot in NDT
Unit V	Case study: Grain Size, Weldment and other Structural Components.

• Non-destructive Testing of welds, Baldev Raj, C.V. Subramanian and T. Jayakumar, Narosa Publishing House, 2000, Delhi.

Reference Book(s):

- International Advances in non-destructive testing, (Ed.) W. J. Mcgonnagle, Gordon and Breach Science Publishers, 1981, NY.
- Non-destructive Testing, Views, Reviews, Previews, (Ed.) L.L. Alston, Oxford University Press, 1970
- Nondestructive Evaluation and quality control, ASM handbook, Volume 17, ASM International

<u>Course Name: Polymer Blends and Nanocomposites</u> <u>Course Code: MM 612</u>

Course Outcomes (CO):	
CO-1:	Detailed introduction to polymer blends and nanocomposites with miscible and
	phase separated thermodynamic aspects
CO-2:	Classified polymer blends and composites
CO-3:	Conception of nanostructured materials and interface of reinforced materials
CO-4:	Demonstrated several processing methods for polymer blends
CO-5:	Case studies of polymer nanocomposites in defence applications

	Syllabus Details
Unit I	Introduction to polymer blends and composites, nanostructured materials and
	nanocomposites Thermodynamical aspects of polymer miscibility, mixing, factors
	governing miscibility, immiscible polymers and phase separation. Importance of
	interface on the property development, compatibilizers and compatibilization.
Unit II	Blends of amorphous & semi-crystalline polymers, inter-penetrating networks,
	thermoplastic and thermoset blends, rubber toughened polymers, particulate and
	fiber reinforced composites.
Unit III	Nanostructured materials like nanoclay, carbon nanotubes, graphene, magnetic
	nanoparticles etc. and polymer nanocomposites. Surface treatment of the

	reinforcing	materials	and	interface/interphase	structures	of
	composites/na	anocomposites				
Unit IV	Various proce	essing techniqu	es like so	olution mixing, melt proc	essing. Physical	and
	thermo-mecha	anical propertie	es of poly	mer blends, composites a	nd nanocompos	sites.
Unit V	Potential App	lications in De	fence.			

- Textbook of Polymer Science, Fred W. Billmeyer (Wiley)
- Polymer alloys and blends by LA Utracki

Reference Book(s):

• Polymer nanocomposites: processing, characterization, and applications by Josheph H. Koo (McGraw-Hill Nanoscience and Technology)

Course Name: Biomaterials Course Code: MM 613

Course Outcomes (CO):		
CO-1:	Detailed discussion of biomaterials along with applications	
CO-2:	Elaborate the classification of biomaterials	
CO-3:	Cognizance of nanobiomaterials	
CO-4:	Project several utilizations of biomaterials	
CO-5:	Case studies of biomaterials for medical applications	

	Syllabus Details		
Unit I	Introduction to biomaterials, Tissue Engineering, Biocompatibility,		
	Biodegradation Biofluids and medical devices, Biostructures		
Unit II	Ceramic based biomaterials, metallic biomaterials, polymer-based biomaterials,		
	Biofluidic, medical devices, Biostructures		
Unit III	Nano-biomaterials: Self-assembly of nanomaterials, hydrophilic, hydrophobic and		
	surfaces, biomimicking		
Unit IV	Medical imaging, electrospinning of scaffold structures, Additive manufacturing		
	of medical devices, biofluidics and biostructure		
Unit V	Case studies: Lotus leaf, Gecko feet, Nacre/Bone. Application of nanocomposite		
	biomaterials: artificial biomaterials, antidrag coatings, self-cleaning surfaces,		
	sensors, Riboswitches		

Textbooks

• Biomaterials- An Introduction, Joon Park- Publisher Springer

Reference Book(s):

- Biomaterials- Principals and Applications- Joon Park- CRC Press
- Handbook of Biomaterial Properties- Garth Hastings- Springer
- Handbook of Biomaterials Properties- William Murphy- Springer
- Handbook of Biomaterial Properties- Jonathan Black- Chapman and Hall

<u>Course Name: Design of Materials</u> <u>Course Code: MM 614</u>

Course Outcomes (CO):		
CO-1:	Principles of solid-state diffusion, their equation along with solution.	
CO-2:	Applications of several mechanical alloys and their phase diagrams	
CO-3:	Cognizance of phase transformations processes	
CO-4:	Understanding ceramics and statistics of brittle fracture	
CO-5:	Demonstration of Solid state, Sol-Gel, Hydrothermal and Co-precipitation process	

	Syllabus Details		
Unit I	Diffusion: First and Second law of diffusion, Solution to diffusion equations and		
	error function, Types of diffusion, Kirkendall effect and applications		
Unit II	Metals and Metal Structures: Generic classes of Metallic alloys and applications		
	Equilibrium shapes of grains and phases;		
	Case studies in phase diagrams: Soft solders, Zone Refinement of Semiconductors,		
	Bubble free Ice		
Unit III	Diffusive and Displacive Transformations: Kinetics of nucleation, diffusive and		
	Martensitic phase transformations;		
	Case Studies in Phase Transformations: Fine grain castings, Rapid solidification		
	and amorphous materials;		
	Light alloys: Age-hardening and thermal stability		
Unit IV	Mechanical properties of Ceramics, Statistics of Brittle fracture: Flaw size and		
	dispersion of strength, Weibull distribution, Design of pressure windows		
Unit V	Composites: Fibrous, particulate and foamed composites, Improving stiffness,		
	strength and toughness.		
	Case studies in Defence applications: Turbine blades, bullet-proof vests, uses of		
	metal matrix composites and carbon-carbon composites.		

Textbooks

- Engineering Materials 1 Michael F. Ashby and David R. H. Jones; Butterworth-Heinemann, Elsevier Publications
- Engineering Materials 2 Michael F. Ashby and David R. H. Jones; Butterworth-Heinemann, Elsevier Publications

Reference Book(s):

• D. A. Porter and K. E. Easterling, Phase transformations in Metals and Alloys, Chapman and Hall, London, 1996

• Physical Metallurgy Principles, Robert E Reed Hill, Cengage Learning, Inc publications, 1992

<u>Course Name: Magnetism and Magnetic Materials</u> <u>Course Code: MM 615</u>

Course Outcomes (CO):		
CO-1:	Brief introduction to moment of magnetic materials	
CO-2:	Analysis of traditional types of magnetism	
CO-3:	Conception of effects of magnetism and application	
CO-4:	Cognizance of material characteristics affecting on magnetism	
CO-5:	Understand different types of magnetic materials	

	Syllabus Details			
Unit I	Moment of a current loop, Orbital angular momentum and magnetic moments,			
	Spin magnetic moment, gyromagnetic ratio, Vector atom model			
Unit II	Classical diamagnetism, Superconductors, Paramagnetic moments, classical			
	paramagnetic.			
Unit III	Weiss molecular field, Brillouin function and spontaneous magnetization, Curie			
	Weiss law, Magnetocaloric effect, Exchange interaction, Spin waves,			
	Antiferromagnetism and Néel temperature, Exchange Bias effect and applications,			
	Ferrimagnetism: Spinel structure and Ferrite moments			
Unit IV	Uniaxial and Cubic anisotropy, Shape anisotropy, Crystal field effects, Origin of			
	magnetic domains, Equilibrium domain size and domain wall, Néel and Bloch			
	Walls			
Unit V	Differentiation between Soft and hard magnetic materials, Finemet alloys, Rare			
	earth permanent magnets, Magnetostriction: TERFNOL-D, Multiferroics,			
	Magnetic Anomaly Detection.			

Textbooks

• Introduction to Magnetic Materials, B. D. Cullity and C. D. Graham; IEEE Press, A. Jon Wiley & Sons Publications

Reference Book(s):

- Fausto Florillo, Measurement and Characterization of Magnetic Materials, Elsevier Academic Press, 2004
- Modern magnetic Materials: Principles and applications Robert C. O Handaley; Wiley-Interscience Publications
- *Physics of magnetism and Magnetic materials*
- K. H. J. Bushaw and F. R. de Boer; Kluwer Academic Publishers

<u>Course Name: Heat-treatment of Metals and Alloys</u> <u>Course Code: MM 616</u>

Course Outcomes (CO):		
CO-1:	Explore several heat treatment processes and TTT curve.	
CO-2:	Analyse the case hardening heat treatment processes	
CO-3:	Comprehend the advanced heat treatment methods	
CO-4:	Identify different heat treatment process for specific metals	
CO-5:	Demonstration of after effects of heat treatment	

	Syllabus Details
Unit I	Steel Heat-Treatment, Annealing, Stress relief annealing, Process Annealing,
	Normalizing, Spheroidizing, Tempering, Quenching, Hardening, TTT Curve,
	Hardenability
Unit II	Case hardening, carburizing, Nitriding, Boronizing
Unit III	Flame hardening, Induction hardening, Laser hardening, Electron beam hardening
Unit IV	Heat treatment of Aluminum, Titanium and Magnesium Alloys
Unit V	Deformation and annealing.

- Heat Treatment Principles & Techniques, TV Rajan, CP Sharma & Ashok Sharma Prentice Hall of India, New Delhi, 2007.
- Metallurgy for Engineers-EC Rollason, 4th Ed, Edward Arnold, UK, 1973.
- Introduction to Physical Metallurgy, SHAvner, TATA Mc-Graw Hill, New Delhi, 2001.

Reference Book(s):

- Engineering Physical Metallurgy by Yuri Lakhtin, Moscow, MIR Publishers, 1963.
- Grain boundary migration in metals: thermodynamics, kinetics, applications, G. Gottstein & L. Shvindlerman, Boca Raton (FL), CRC, 1999.

<u>Course Name: Materials for High -Temperature Applications</u> <u>Course Code: MM 617</u>

Course Outcomes (CO):			
CO-1:	An introduction to high temperature materials: Alloys and non-metals and their		
	property requirements		
CO-2:	Concept of creep and high temperature oxidation behaviour and their mitigation.		
CO-3:	Case study 1: High speed steels: their application, process and properties		
CO-4:	Case study 2: Ni based Superalloys as aero-engine applications, their structures		
	and processing		
CO-5:	Identified advanced structural ceramics for high temperature application		

Syllabus Details	

Unit I	Melt processing of Superalloy, Single crystal Superalloy, Processing of
	Superalloy, Alloying effect.
Unit II	Oxide Dispersion Strengthened alloys. Powder Metallurgy
Unit III	High temperature deformation, Room and high temperature Wear, Advanced
	coating materials, High Entropy Alloys
Unit IV	Fiber Reinforced Composite Superalloy
Unit V	Processing and properties of advanced Structural Ceramics

- Superalloys, supercomposites and super ceramics, ed. J. K Tien and T. Caulfield, Academic Press, 1989, Boston.
- High temperature structural materials, R. W. Cahn, Chapman and Hall, 1996, London.

Reference Book(s):

- Materials for High Temp. Engg. Applications, G. W. Meetham and M.H. Van de Voorde, Springer, 2000, Berlin.
- Friction, wear and Lubrications, K.C. Ludema, CRC Press, 1996.
- Powder Metallurgy: Science, Technology, and Materials Anish Upadhyaya and G. S. Upadhyaya, Taylor & Francis, 2011

<u>Course Name: Advanced Steel Technology</u> <u>Course Code: MM 618</u>

Course Outcomes (CO):	
CO-1:	Comprehend different strengthening mechanisms in steel
CO-2:	Introduce low carbon steel and their characteristics
CO-3:	Explore medium and high carbon steel along with their transformations
CO-4:	Importance of pearlite microstructures
CO-5:	Applications of special steel materials like bainite and case studies for defence
	applications

	Syllabus Details
Unit I	Strengthening mechanisms: Work hardening, Solid solution strengthening, Grain
	size refinement, Dispersion strengthening
Unit II	Low Carbon steels: Austenite to ferrite transformation, High strength low alloys
	steels, Interstitial free steels, Dual phase and TRIP steels
Unit III	Medium and high carbon steels: Austenite to pearlite transformation, Ferritic-
	pearlitic microstructures in medium carbon steels, Austenite to Cementite
	transformation, Unit 4: Fully pearlitic microstructures: Rail steels, high strength
	steel wires
Unit IV	Fully pearlitic microstructures: Rail steels, high strength steel wires

Unit V	Special steels: Bainite: Upper and lower Bainite microstructures, Bainite
	transformation mechanisms and transition, nanostructured Bainite; Maraging
	steels, Stainless steel, TWIP steels, Case studies for defence applications.

• Steels: Processing, Structure, and Performance, George Krauss; ASM International

Reference Book(s):

• Steels: Microstructure and Properties HKDH Bhadeshia and Sir R. Honeycomb; Butterworth-Heinmann, Elsevier Publications

Course Name: Military Materials Course Code: MM 619

Course Outcomes (CO):	
CO-1:	An overview of special materials requirements for military applications.
CO-2:	Requirement of materials, their properties and processes for armor protection
	systems.
CO-3:	Discussion of specific required for ammunition applications and their properties
	and processes.
CO-4:	Special alloys and their stringent properties required for building fighter aircraft.
CO-5:	Special steels and their process for naval vessels.

	Syllabus Details
Unit I	Overview metallic materials for military application, needs of complex metals and
	alloys required for modern and sophisticated warfare weapons systems.
	Conventional alloys for military application: Functional requirements of cartridge
	case and manufacture, Brass and steel cartridge cases, Cased ammunition. Steel
	shell bodies – High explosive squash head, Steel guns barrels- Direct fire tank
	guns, Indirect fire artillery guns, Alloys for military bridges: Mild steel- Bailey
	bridge and heavy girder bridge, Aluminum alloy – Medium girder bridge and BR
	90.
Unit II	Special Alloys for Armour applications: Rolled Homogeneous Armour steels:
	Kanchan armour for Arjun tank, Steel armour plate, Aluminum alloy armour for
	light armoured vehicles, Body armour.
Unit III	Alloys for ammunition applications: Ferrous fragmenting projectiles: Cast iron
	mortar bomb bodies, Steel 155 mm anti-personnel artillery shell body. Conical
	shaped charge weapon system, Hydrodynamic penetration, Copper charge
	penetrators. Kinetic energy penetrators: Armour piercing fin stabilised discarding
	Sabot, Tungsten heavy alloys as long rod penetrator, Recent development

Unit IV	Alloys for aerospace applications: Materials required for engine parts, Superalloys
	for high temperature applications, Single crystal blades made of Ni based super
	alloys, Aerospace grade low density high strength Ti and Al alloys, Ultra-high-
	strength steel with the toughness for missile applications.
Unit V	Special alloys for naval applications: Special alloys with functional properties:
	Advanced magnetic materials - Ultra high energy product permanent magnets,
	emerging materials such as nanomaterials and smart materials

• Alistair Doig, Military metallurgy, Maney publishing, 2002

Reference Book(s):

- Physical Metallurgy Principles, Robert E Reed Hill, Cengage Learning, Inc publications, 1992
- Physical Metallurgy, Vijendra Singh, Standard Publishers Distributors, 2010.
- Paul J Hazell, Armour Materials Theory and Design, CRC Press, 20

Course Name: Introduction to Corrosion

Course Code: MM 620

Course Outcomes (CO):	
CO-1:	Introduction to thermodynamics of corrosion
CO-2:	Identification of electrode kinetics and polarisation
CO-3:	Cognizance of mixed potential theory
CO-4:	Recognized different forms of corrosion
CO-5:	Case studies of environmental factors causing corrosion

	Syllabus Details
Unit I	What is corrosion – definition & fundamentals, Importance & Economic Impact
	of Corrosion, Thermodynamics of Corrosion, Electrochemical principles of
	Corrosion, Potential versus pH (Pourbaix) diagrams – Calculation & Construction
	of E – pH diagrams & its practical use. Copper, Aluminium & general corrosion
	diagram, Mixed Potential or Evans diagram & its application.
Unit II	Electrode Kinetics and Polarization Phenomenon: Electrode – Solution interface –
	Definition & types of polarization. Exchange current density and polarization
	relationships. Polarization techniques – corrosion rate determination
Unit III	Mixed Potential concepts and Basics. Mixed potential theory – bimetallic couples.
	Activation and diffusion controlled mixed electrodes. Origin of electrochemical
	noise and its application.
Unit IV	Forms of Corrosion – Uniform, Localized & Metallurgical influenced – Pitting,
	Crevice, Galvanic & Intergranular Corrosion, Mechanically Assisted,
	Environmentally Induced & Microbiologically influenced Corrosion.

Unit V	Nernst equation, EMF Series and Galvani Series, Stern-Gary eqn. Mechanical and
	environmental factors affecting corrosion, materials selection for different
	Defence applications. Passivity, trans passivity and breakdown, corrosion resistant
	and high temperature resistant materials.

• Mars G. Fontana, Corrosion Engineering, 3rd Ed., McGraw-Hill, Singapore, 1987

Reference Book(s):

• H.H. Uhlig and R.W. Revie, Corrosion and its control, 3rd Ed., John Wiley, Singapore, 1991

<u>Course Name: Welding Science and Technology</u> <u>Course Code: MM 621</u>

Course Outcomes (CO):	
CO-1:	Analyse the welding processes
CO-2:	Understand the physics of welding
CO-3:	Correlation of metallurgy and welding
CO-4:	Understand the welding of various alloys
CO-5:	Analyse the failures in welding and their remedies

	Syllabus Details
Unit I	Classification of welding processes, study of welding arc characteristics, metal
	transfer during arc welding, heat flow in welding, Chemical reactions in welding,
	weld pool solidification, effect of welding process parameters on the macro-and
	micro-structure of weld metal.
Unit II	Thermal cycles in the heat affected zone. Phase transformations in the weld metal
	and the heat affected zone. High power density processes such as laser and electron
	beam welding.
Unit III	Welding metallurgy under high cooling rates. Phenomena of hot-cracking and cold
	cracking. Residual stresses and distortion during and after welding, Fatigue and
	fracture of weldments. Sensitized phenomena
Unit IV	Application of above principles to welding of carbon and alloy steels, cast irons,
	stainless steels, aluminum and titanium alloys. Weld decay, problems associated
	with welding of metals and alloys. Stabilized alloy
Unit V	Pre and post welding Heat treatment processes, Failure analysis

• K. Easterling, Introduction to Physical Metallurgy of Welding, Butterworths Pub., 1983.

Reference Book(s):

- Sindo Kou, Welding Metallurgy, John Wiley & Sons, New York, 1987.
- S.A. David (Ed.), Advances in Welding Science and Technology, American Society for Metals, Ohio, 1986.

<u>Course Name: High Temperature Corrosion</u> <u>Course Code: MM 622</u>

Course Outcomes (CO):	
CO-1:	Brief introduction to free energy, partial pressure and related diagrams
CO-2:	Analysis of thermodynamics of high temperature gases with metals
CO-3:	Conception of effects of defect interaction kinetics
CO-4:	Cognizance of corrosion characteristics affecting metals
CO-5:	Understand different applications of high temperature corrosion
CO-6:	Measurement of degradation of materials in high temperature applications
CO-7:	Understanding high temperature corrosion testing

	Syllabus Details
Unit I	Free energy, Partial pressure, Ellingham diagram
Unit II	Introduction, high temperature gaseous reaction (dry), single metal-single
	oxidant systems, aspects of thermodynamics, kinetics, transport properties, scale
	morphologies, electrochemical emphasis, various forms of high temperature
	corrosion including molten salt corrosion, thermodynamic phase stability in
	metal/gas systems-predominance area diagrams;
Unit III	Theory of point defects in corrosion products, defect interactions, scale growth
	kinetics and mechanisms, Wagner's parabolic scale growth process, other types
	of kinetics laws and mechanisms, morphological aspects in the growth of thick
	scales.
Unit IV	Corrosion product evaporation, analyses of kinetic data; alloy oxidation-kinetics,
	mechanisms, morphology, hot corrosion of metals and alloys-mechanisms and
	examples.
Unit V	High temperature corrosion in various applications
Unit VI	Measurements of High – Temperature Degradation, High Temperature Corrosion
	& Degradation Processes.
Unit VII	High Temperature Corrosion Testing

Textbooks

- Per Kofstad, High Temperature Corrosion, Elsevier Applied Science, 1988.
- U.R. Evans, Corrosion and Oxidation of Metals, Arnold Publ., London, 1981.

Reference Book(s):

- N. Birks and G.H. Meier, Introduction to Oxidation of Metals, Edward Arnold, London, 1983.
- A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Materials Park, Ohio, 2002.
- Phase transformation in metals and alloys, Porter and Easterling.

Course Name: Corrosion Mitigation Course Code: MM 623

Course Outcomes (CO):	
CO-1:	Understand importance of protective coating process and their classification
CO-2:	Knowledge of the fundamentals and applications of coating techniques
CO-3:	Cognizance of factors affecting cathodic and anodic protection
CO-4:	Demonstrated corrosion protection in extreme environmental conditions
CO-5:	Case studies for Defence Applications

	Syllabus Details	
Unit I	Protective Coatings – Introduction, coatings & Coating Processes,	
	Supplementary protection systems, Surface preparation. Classification of	
	inhibitors, Corrosion inhibition Mechanism, Selection of an inhibitor system	
Unit II	Requirement of protective coatings, classification of organic and inorganic	
	coatings, metallic coatings, electrodeposition and electroless coatings. Paint	
	coatings for corrosion protection, role of resins, pigment, additives and solvents,	
	Advanced coatings (CVD, ALD and PVD).	
Unit III	Cathodic and Anodic Protection - principles & classifications, mechanism of	
	Cathodic and anodic protections – influencing factors and Monitoring	
Unit IV	Corrosion protection in extreme environment such as nuclear irradiation, high	
	pressure etc.	
Unit V	Case studies relevant to Defence Applications: (Superhydrophobic coatings, anti-	
	barnacles coating, corrosion control of underground pipelines, storage tanks,	
	overhead pipelines, offshore structures, ship hulls, risers, reinforced bars and	
	concrete structures	

Textbooks

- Corrosion: Environment and Industries, Metals Handbook, Vol. 13c, Park Ohio, 1984, 10th Ed., ASM Metals, Ohio, 1987.
- N.D. Tomashov, Theory of Corrosion and Protection of Metals, Macmillan, 1967.
- M.G. Fontana, Corrosion Engineering, 3rd Ed., McGraw-Hill, 1985. 4. H.H. Uhlig, Corrosion & Corrosion Control, Wiley, 1985.

Reference Book(s):

- *R. Lambourne and T.A. Strivens, Paint and Surface Coatings, Ellis Horwood D, Chichster, 1987.*
- C.G. Munger, Corrosion Prevention by Protective Coatings, NACE Pub., Houston, 1984.
- Surface Finishing, Cleaning & Coatings, ASM Handbook, Vol. 5, 1994.
- J. Biesiek and J. Weber Portcullis, Electrolytic and Chemical Conversion Coatings, Red Hill Press, 1976.
- F.A. Lowenheim, Electroplating: Fundamentals of Surface Finishing, McGraw-Hill, New York, 1978.

Course Name: Advanced Coatings Course Code: MM 624

Course Outcomes (CO):		
CO-1:	Recognized requirements of protective coatings and their classification	
CO-2:	Reviewed commonly used coating methods	
CO-3:	Conception of coating application of material surface	
CO-4:	Understanding importance of coating to underground surfaces, offshore structures, etc.	
CO-5:	Case studies on advanced coating application	

	Syllabus Details	
Unit I Requirement of protective coatings, classification of organic, po		
	inorganic coatings, conversion coatings, metallic coatings, electrodeposition and	
	electroless coatings.	
Unit II	t II Paint coatings for corrosion protection, role of resins, pigment, additives an	
	solvents.	
Unit III	Application techniques: Surface preparation and its importance in coating, role of	
	coating selection & design of coating, failure mechanism, maintenance coatings,	
	industrial paint systems, modern paint coating systems and specific examples.	
Unit IV	Coatings for underground pipelines, storage tanks, overhead pipelines, offshore	
	structures, ship hulls, risers, reinforced bars and concrete structures. Testing and	
	evaluation. TBC, EBC	
Unit V	Case studies	

Textbooks

- *R. Lambourne and T.A. Strivens, Paint and Surface Coatings, Ellis Horwood D, Chichster, 1987.*
- 2. C.G. Munger, Corrosion Prevention by Protective Coatings, NACE Pub., Houston, 1984. Reference Book(s):
- 3. Surface Finishing, Cleaning & Coatings, ASM Handbook, Vol. 5, 1994.
- 4. J. Biesiek and J. Weber Portcullis, Electrolytic and Chemical Conversion Coatings, Red Hill Press, 1976.

• 5. F.A. Lowenheim, Electroplating: Fundamentals of Surface Finishing, McGraw-Hill, New York, 1978.

<u>Course Name: Surface Science and Engineering</u> <u>Course Code: MM 625</u>

Course Outcomes (CO):		
CO-1:	Represented theory of surface reconstructions and its characteristics	
CO-2:	Learn the effect of theoretical and experimental evaluation of surface energy of	
	substrate surface structure	
CO-3:	Demonstrate thermodynamics of solid liquid and solid gas interfaces	
CO-4:	Analyzed wear mechanisms and their categorization	
CO-5:	Fundamentals and applications of surface coating techniques	

	Syllabus Details	
Unit I	Theory of surface reconstructions, electronic properties of surfaces, interfaces and	
	overlayers. Characterisation of surfaces by photons, electrons and ions as probes.	
Unit II	The effect of substrate surface structure on the overlayer properties. Theoretical	
	and experimental evaluation of surface energies	
Unit III	III Solid-liquid and solid-gas interfaces-surface potentials, colloids, sedimentatio	
	adsorption and reaction on surfaces. Damage of the surfaces by corrosion and	
	wear.	
Unit IV	Wear mechanisms and categories of wear. Surface modifications by diffusion, heat	
	treatment and by coatings, Surface Processing laser, electrons and ions	
Unit V	Physical and vapour deposition, CVD, ion-implantation, thermal spray coating.	

Textbooks

- M. Prutton, Surface Physics, 2nd Ed., Clarendon Press, Oxford, 1983.
- A.W. Adamson, Physical Chemistry of Surfaces, 3rd Ed., Wiley, 1976.

Reference Book(s):

- K.G. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, 1988.
- K.H. ZumGahr, Microstructure and Wear of Materials, Elsevier, 1987.

<u>Course Name: Reliability Engineering</u> <u>Course Code: MM 626</u>

Course Outcomes (CO):	
CO-1:	Detailed overview of probability theory
CO-2:	Assessed fundamentals of FMEA techniques
CO-3:	Inspected Design of Experiments analysis of variance technique
CO-4:	Investigated future of product liability
CO-5:	Cognizance of product development and its application

	Syllabus Details	
Unit I	Basic Probability Theory Basic concepts, Rules for combining Probabilities of	
	events, Failure Density and Distribution functions, Bernoulli's trials, Binomial	
	distribution, Expected value and standard deviation for binomial distribution -	
	Examples	
Unit II	Failure Mode and Effect Analysis (FMEA) Basic Principles and General	
	Fundamentals of FMEA Methodology	
Unit III	t III Design of Experiments Analysis of Variance Technique-Strategy of Experiment	
	Design	
Unit IV	Product Liability and Planning History, Product Safety Law, Product Liability	
	Law, The future of product Liability- Prevention. Degree of Novelty of a Product,	
	Product Life Cycle, Company Goals and Their Effect. Solution Finding Methods-	
	Conventional Methods, Intuitive Methods, Discursive Methods, Methods for	
	Combining Solutions- Examples.	
Unit V Product Development Process General Problem-Solving Process- Flow		
	During the Process of Designing, Activity Planning, Timing and Scheduling,	
	Planning Project and Product Costs, Effective Organization Structures-	
	Interdisciplinary Cooperation, Leadership and Team Behaviour.	

- G. Haribaskaran, Probability, Queuing Theory & Reliability Engineering, Laxmi publications, Second Edition.
- D. H. Besterfield, Glen H. Besterfield and M. Besterfield-Sacre, Total Quality Management, Pearson Publications, Third Edition

Reference Book(s):

- E. Walpole, H. Myers and L. Myers, Probability and Statistics for engineering and Scientists, Pearson Publications, Eighth Edition.
- BrendBretsche, Reliability in Automotive and Mechanical Engineering, Springer Publications.
- G. Pahl, W. Bietz, J. Feldhusen and K. H. Grote, Engineering Design a Systematic approach, Springer Publications, Third Edition.
- V. Sankar, System Reliability Concepts, Himalaya Publishing House, 2015.
- Roy Billinton and Ronald N. Allan, Reliability Evaluation of Engineering Systems, Reprinted in India B. S. Publications, 2007.
- E. Balagurusamy, Reliability Engineering, Tata McGraw Hill, 200

<u>Course Name: Research Methodology and IPR</u> <u>Course Code: PGC-601</u>

Course Outcomes (CO):	
CO-1	Understanding the fundamentals of research and its methodology

CO-2	Choose the appropriate research design and develop appropriate research	
	hypothesis for a research project	
CO-3	Knowledge of manuscript preparation, patents and Intellectual property	
CO-4	Technology transfer and application of IPR in various domains	

	Syllabus Details
Unit I:	Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations
Unit II:	Effective literature studies approaches, analysis Plagiarism, Research ethics,
Unit III	Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee
Unit IV	Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.
Unit V	Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications
Unit VI	New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References Textbooks:

- Stuart Melville and Wayne Goddard, "Research methodology: an introduction for
- science & engineering students'"
- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for
- beginners"
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- Mayall, "Industrial Design", McGraw Hill, 1992.
- Niebel, "Product Design", McGraw Hill, 1974.
- Asimov, "Introduction to Design", Prentice Hall, 1962.
- Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Course Name: Audit Course Course Code: PGC-602

	Syllabus Details
Unit I:	English for Research Paper Writing
Unit II:	Disaster Management
Unit III	Sanskrit for Technical Knowledge
Unit IV	Value Education
Unit V	Constitution of India
Unit VI	Pedagogy Studies
Unit VII	Stress Management by Yoga
Unit VIII	Personality Development through Life Enlightenment Skills